Parametrized Partial Differential Equations

Heat Transfer
 Back-of-the-Envelope Calculations:
 Model Simplification, Model Order Reduction

> Anthony T Patera, MIT

Mathematics of Reduced Order Models ICERM
Providence, RI, USA
February 19, 2020

pPDEs

Heat Transfer
 Back-of-the-Envelope Calculations:
 Model Simplification, Model Order Reduction

> Anthony T Patera, MIT

Mathematics of Reduced Order Models ICERM
Providence, RI, USA
February 19, 2020

Acknowledgments

Collaborators:

- J Penn

MIT

- K Kaneko, P Fischer, P-H Tsai
- T Taddei
- P Huynh, D Knezevic, L Nguyen

U Illinois

INRIA Bordeaux Akselos SA

- Students in 2.51 Intermediate Heat and Mass Transfer MIT

Financial Support: AFOSR, ONR, ARO

Perspective

Back-of-the-Envelope Calculation (Figurative)

Definition (Wikipedia)

A back-of-the-envelope calculation is a rough calculation, typically jotted down on any available scrap of paper such as an envelope. It is more than a guess but less than an accurate calculation or mathematical proof.
The defining characteristic of back-of-the-envelope calculations is the use of simplified assumptions.

Single-Screen Script (Literal)

Definition (Paterapedia)

A single-screen script is a rough prediction, implemented with a limited instruction set in a code which can be viewed in its entirety on a single screen. It is more than a guess but less than an accurate calculation or mathematical proof.

A defining characteristic of single-screen script predictions is the use of model simplification.

Relevance to Workshop

Definition (Paterapedia)

A single-screen script is a rough prediction, implemented with a limited instruction set in a code which can be viewed in its entirety on a single screen. It is more than a guess but less than an accurate calculation or mathematical proof.

A defining characteristic of single-screen script predictions is the use of model simplification.

The limited instruction set is (for heat transfer)...

Relevance to Workshop

Definition (Paterapedia)

A single-screen script is a rough prediction, implemented with a limited instruction set in a code which can be viewed in its entirety on a single screen. It is more than a guess but less than an accurate calculation or mathematical proof.
A defining characteristic of single-screen script predictions is the use of model simplification.

The limited instruction set is (for heat transfer). . . a set of pPDEs.

Questions to Ponder: 2020

Why do we teach students Back-of-the-Envelope - succinct, transparent, fast - methods of engineering analysis still in 2020?

Questions to Ponder: 2020

Why do we teach students Back-of-the-Envelope - succinct, transparent, fast - methods of engineering analysis still in 2020?
Why do engineers practice Back-of-the-Envelope calculations - in tandem with large-scale simulation - still in 2020?

Questions to Ponder: 2020

Why do we teach students Back-of-the-Envelope - succinct, transparent, fast - methods of engineering analysis still in 2020?
Why do engineers practice Back-of-the-Envelope calculations - in tandem with large-scale simulation - still in 2020?

How can we study Back-of-the-Envelope engineering analysis through the lens of undergraduate education (2.51)?

Questions to Ponder: 2020

Why do we teach students Back-of-the-Envelope - succinct, transparent, fast - methods of engineering analysis still in 2020?

Why do engineers practice Back-of-the-Envelope calculations - in tandem with large-scale simulation - still in 2020?

How can we study Back-of-the-Envelope engineering analysis through the lens of undergraduate education (2.51)?
How can the Back-of-the-Envelope benefit - without losing essential advantages - from computational advances 1960-2020?

Questions to Ponder: 2020

Why do we teach students Back-of-the-Envelope - succinct, transparent, fast - methods of engineering analysis still in 2020?

Why do engineers practice Back-of-the-Envelope calculations - in tandem with large-scale simulation - still in 2020?

How can we study Back-of-the-Envelope engineering analysis through the lens of undergraduate education (2.51)?

How can the Back-of-the-Envelope benefit - without losing essential advantages - from pMOR advances 1960-2020?

Questions to Ponder: 2020

Why do we teach students Back-of-the-Envelope - succinct, transparent, fast - methods of engineering analysis still in 2020?

Why do engineers practice Back-of-the-Envelope calculations - in tandem with large-scale simulation - still in 2020?

How can we study Back-of-the-Envelope engineering analysis through the lens of undergraduate education (2.51)?

How can the Back-of-the-Envelope benefit - without losing essential advantages - from pMOR advances 1960-2020?

Is the Back-of-the Envelope fundamentally a human activity, or can it be viewed more formally as an algorithm or framework?

Future Prospects: 2030

Headline:

Artificial Student Earns A+ in MIT Subject 2.51

Implications: in engineering education
How should we change what we teach, and how we teach?
How should we change our assessment of (human) students? and downstream, in professional engineering practice,

How can we enhance prediction procedures?
General theme: integrated methodology for mathematical modeling and computation.

First (very brittle) steps: Artie [44].

Macroscale Heat Transfer. . .

External Flows

Conduction, Forced and Natural Convection (Gravity-Induced), Radiation

Key Topics

Review of Heat Transfer
Heat Transfer (2.51) Back-of-the-Envelope Framework
Examples from 2.51 Project Case Studies
Opportunities for Parametrized Model Order Reduction
Thread: Parametrized Partial Differential Equations

Heat Transfer 101

via the Dunk Problem

Macroscale Heat Transfer. . .

External Flows

Conduction, Forced and Natural Convection (Gravity-Induced), Radiation

Motivation and Notation
 P Phan 2.51

An Idealized Configuration

Let $\Omega \subset \mathbb{R}^{3}, \bar{\Omega}=\overline{\Omega_{\mathrm{s}}} \cup \overline{\Omega_{\mathrm{f}}}$:
$\Omega_{\mathrm{f}} \equiv$ fluid (air) domain: effectively infinite;
$\Omega_{\mathrm{s}} \equiv$ solid domain: convex, (single, scale) parameter ℓ;
$\Gamma_{\mathrm{sf}} \equiv \overline{\Omega_{\mathrm{s}}} \cap \overline{\Omega_{\mathrm{f}}} \backslash \overline{\Gamma_{\mathrm{s}} \mathrm{ad}} ;$

$$
\partial \Omega_{\mathrm{s}} \equiv \overline{\Gamma_{\mathrm{sf}}} \cup \overline{\Gamma_{\mathrm{s}}^{\mathrm{ad}}}
$$

uniformly large enclosure: $\operatorname{dist}\left(\Omega_{\mathrm{s}}, \partial \Omega\right) \gg \ell$;
coordinate system: $x \equiv\left(x_{1}, x_{2}, x_{3}\right),\left\{\mathbf{e}_{i}\right\} ;$; gravity $\mathbf{g}=-g \mathbf{e}_{2}$.
Initial conditions: $\left.T\right|_{\Omega_{\mathrm{s}}} \equiv T_{\mathrm{s}}=T_{\mathrm{i}}$ uniform, $\left.T\right|_{\Omega_{\mathrm{f}}} \equiv T_{\mathrm{f}}=T_{\infty}$; assume $T_{\mathrm{i}}>T_{\infty}$ (wlog).

Farfield conditions: quiescent fluid; $T_{f}=T_{\infty}($ on $\partial \Omega)$ - implicit.

Governing Equations: Dimensional

Find $\left[V \equiv\left(V_{1}, V_{2}, V_{3}\right), T\right](x, t)$

$$
T_{\mathrm{s}}=\left.T\right|_{\Omega_{\mathrm{s}}}, T_{\mathrm{f}}=\left.T\right|_{\Omega_{\mathrm{f}}}
$$

$$
\begin{aligned}
& \frac{\partial V}{\partial t}+V \cdot \nabla V=-\nabla \frac{p}{\rho_{\infty}}+g \beta\left(T_{\mathrm{f}}-T_{\infty}\right) \mathbf{e}_{2}+\nu \nabla^{2} V \text { in } \Omega_{\mathrm{f}}, t>0 \\
& \nabla \cdot V=0 \text { in } \Omega_{\mathrm{f}}, t>0 \\
& \frac{\partial T_{\mathrm{f}}}{\partial t}+V \cdot \nabla T_{\mathrm{f}}=\alpha_{\mathrm{f}} \nabla^{2} T_{\mathrm{f}} \text { in } \Omega_{\mathrm{f}}, t>0 \\
& \quad \frac{\partial T_{\mathrm{s}}}{\partial t}=\alpha_{\mathrm{s}} \nabla^{2} T_{\mathrm{s}} \text { in } \Omega_{\mathrm{s}}, t>0 \\
& T_{\mathrm{s}}=T_{\mathrm{f}},-k_{\mathrm{s}} \nabla T_{\mathrm{s}} \cdot \hat{\mathrm{n}}=-k \nabla T_{\mathrm{f}} \cdot \hat{\mathrm{n}}+\varepsilon_{\mathrm{r}} \sigma_{\mathrm{SB}}\left(T_{\mathrm{s}}^{4}-T_{\infty}^{4}\right) \text { on } \Gamma_{\mathrm{sf}}, t>0 \\
& T_{\mathrm{s}}(\cdot, t=0)=T_{\mathrm{i}} \text { in } \Omega_{\mathrm{s}}, T_{\mathrm{f}}(\cdot, t=0)=T_{\infty} \text { in } \Omega_{\mathrm{f}} .
\end{aligned}
$$

The Dunk(ing) Problem
Conjugate Framework Convection Heat Transfer Coefficient Classical (HTC) Framework

Heat Transfer to Fluid
Boundary Condition on Solid Body
Experimental Program
Incorporation of Radiation

Fluid Domain and Wall

S Austin 2.51

HTC_{c} : Definition

Consider solid body \mathcal{B} surrounded by fluid; define wall $\Gamma_{w} \equiv \partial \mathcal{B}$.
Given: wall Γ_{w} approximately isothermal at temperature T_{w};
fluid far from wall at temperature T_{∞} (and quiescent).
The spatial-averaged convection $\mathrm{HTC}_{\mathrm{c}}$ is defined as

$$
\left\langle\bar{\eta}_{\mathrm{c}}^{\mathrm{iso}}\right\rangle\left[T_{\mathrm{w}}\right] \equiv \frac{\left\langle Q_{\mathrm{w}}\right\rangle}{\left|\Gamma_{\mathrm{w}}\right|\left(T_{\mathrm{w}}-T_{\infty}\right)}
$$

for
$Q_{w} \equiv \int_{\Gamma_{w}} q_{w} d S \equiv$ heat transfer rate from wall to fluid,
$q_{\mathrm{w}} \equiv$ heat flux from wall to fluid,
$\left|\Gamma_{w}\right| \equiv$ the surface area of wall Γ_{w};
$\langle\cdot\rangle \equiv$ steady-state or long-time-average operator.

Newton's Law of Cooling

By construction: $\left\langle Q_{w}\right\rangle \equiv \int_{\Gamma_{w}} q_{w} d S=\left\langle\bar{\eta}_{c}^{i s o}\right\rangle\left[T_{w}\right] \cdot\left|\Gamma_{w}\right|\left(T_{w}-T_{\infty}\right)$.
Heat flux q_{w} :

$$
\begin{aligned}
q_{\mathrm{w}} & \equiv-k_{\mathrm{f}} \nabla T_{\mathrm{f}} \cdot \hat{\mathbf{n}} \quad \text { Fourier's Law (in fluid) } \\
& \approx-k_{\mathrm{f}} \frac{\left(T_{\infty}-T_{\mathrm{w}}\right)}{\delta^{\mathrm{bl}}\left(x_{\mathrm{s}}\right)} \quad \delta^{\mathrm{bl}}: \text { thermal boundary layer ; }
\end{aligned}
$$

but for laminar natural convection, $\delta^{\text {bl }}$ depends weakly on x_{s},

$$
\delta^{\mathrm{bl}}\left(x_{\mathrm{s}}\right) \sim \alpha_{\mathrm{f}}^{1 / 2}\left(g \beta\left|T_{\mathrm{w}}-T_{\infty}\right|\right)^{-1 / 4} x^{1 / 4}
$$

hence

$$
q_{\mathrm{w}} \approx\left\langle\bar{\eta}_{\mathrm{c}}^{\text {iso }}\right\rangle\left[T_{\mathrm{w}}\right] \cdot\left(T_{\mathrm{w}}-T_{\infty}\right) \text { on } \Gamma_{\mathrm{w}} \text { uniform. }
$$

The Dunk(ing) Problem

Heat Transfer to Fluid
Boundary Condition on Solid Body Experimental Program

Boundary Layer Visualization

Background-Oriented Schlieren

$$
\begin{gathered}
\delta^{\mathrm{bl}}\left(x_{\mathrm{s}}\right) \sim \sqrt{\alpha_{\mathrm{f}} \mathrm{t}^{\mathrm{LE}}\left(x_{\mathrm{s}}\right)}=\sqrt{\alpha_{\mathrm{f}} x_{s} / \mathcal{U}_{\text {buoy }}\left(x_{s}\right)} \\
\mathcal{U}_{\text {buoy }}\left(x_{\mathrm{s}}\right) \sim \sqrt{g \beta\left|T_{\mathrm{w}}-T_{\infty}\right| x_{s}}
\end{gathered}
$$

The Dunk(ing) Problem
Conjugate Framework Convection Heat Transfer Coefficient

Classical (HTC) Framework

Solid and Fluid Domains

Dirichlet-Neumann Map \Rightarrow Robin Condition

Now assume T_{w} is not known, but part of solution for T_{s} in \mathcal{B}.
Boundary condition on solid body \mathcal{B} :

$$
\begin{aligned}
-k_{\mathrm{s}} \nabla T_{\mathrm{s}} \cdot \hat{\mathbf{n}} & =-k_{\mathrm{f}} \nabla T_{\mathrm{f}} \cdot \hat{\mathbf{n}} \quad \text { (First Law) } \\
& =q_{\mathrm{w}} \\
& \approx\left\langle\bar{\eta}_{\mathrm{c}}^{\mathrm{iso}}\right\rangle\left[T_{\mathrm{w}}\right] \cdot\left(T_{\mathrm{w}}-T_{\infty}\right) .
\end{aligned}
$$

Dirichlet-Neumann Map \Rightarrow Robin Condition

Now assume T_{w} is not known, but part of solution for T_{s} in \mathcal{B}.
Boundary condition on solid body \mathcal{B} :

$$
\begin{aligned}
-k_{\mathrm{s}} \nabla T_{\mathrm{s}} \cdot \hat{\mathbf{n}} & =-k_{\mathrm{f}} \nabla T_{\mathrm{f}} \cdot \hat{\mathbf{n}} \quad \text { (First Law) } \\
& =q_{\mathrm{w}} \\
& \approx\left\langle\bar{\eta}_{\mathrm{c}}^{\mathrm{iso}}\right\rangle\left[T_{\mathrm{f}}\right] \cdot\left(T_{\mathrm{f}}-T_{\infty}\right)
\end{aligned}
$$

Dirichlet-Neumann Map \Rightarrow Robin Condition

Now assume T_{w} is not known, but part of solution for T_{s} in \mathcal{B}.
Boundary condition on solid body \mathcal{B} :

$$
\begin{aligned}
-k_{\mathrm{s}} \nabla T_{\mathrm{s}} \cdot \hat{\mathbf{n}} & =-k_{\mathrm{f}} \nabla T_{\mathrm{f}} \cdot \hat{\mathbf{n}} \quad \text { (First Law) } \\
& =q_{\mathrm{w}} \\
& \approx\left\langle\bar{\eta}_{\mathrm{c}}^{\mathrm{iso}}\right\rangle\left[T_{\mathrm{s}}\right] \cdot\left(T_{\mathrm{s}}-T_{\infty}\right)
\end{aligned}
$$

Dirichlet-Neumann Map \Rightarrow Robin Condition

Now assume T_{w} is not known, but part of solution for T_{s} in \mathcal{B}.
Boundary condition on solid body \mathcal{B} :

$$
\begin{aligned}
-k_{\mathrm{s}} \nabla T_{\mathrm{s}} \cdot \hat{\mathbf{n}} & =-k_{\mathrm{f}} \nabla T_{\mathrm{f}} \cdot \hat{\mathbf{n}} \quad \text { (First Law) } \\
& =q_{\mathrm{w}} \\
& \approx\left\langle\bar{\eta}_{\mathrm{c}}^{\text {iso }}\right\rangle\left[T_{\mathrm{s}}\right] \cdot\left(T_{\mathrm{s}}-T_{\infty}\right)
\end{aligned}
$$

if isothermal wall condition is approximately satisfied.
Condition for approximately isothermal wall: either

$$
\operatorname{Bi}_{\mathrm{c}}\left[T_{\mathrm{w}}\right] \text { (Biot Number) } \equiv \frac{\left\langle\bar{\eta}_{\mathrm{c}}^{\text {iso }}\right\rangle\left[T_{\mathrm{w}}\right] \mathcal{L}}{k_{\mathrm{s}}} \ll 1
$$

for \mathcal{L} an appropriate length scale in solid body.
Argument: $\frac{k_{s}(\Delta T)_{\text {in } \mathcal{B}}}{\mathcal{L}} \approx\left\langle\bar{\eta}_{\mathrm{c}}^{\text {iso }}\right\rangle\left[T_{\mathrm{w}}\right] \cdot\left(T_{\mathrm{w}}-T_{\infty}\right) \Rightarrow \frac{(\Delta T)_{\text {in }}}{\left|T_{\mathrm{w}}-T_{\infty}\right|} \ll 1$.

Dirichlet-Neumann Map \Rightarrow Robin Condition

Now assume T_{w} is not known, but part of solution for T_{s} in \mathcal{B}.
Boundary condition on solid body \mathcal{B} :

$$
\begin{aligned}
-k_{\mathrm{s}} \nabla T_{\mathrm{s}} \cdot \hat{\mathbf{n}} & =-k_{\mathrm{f}} \nabla T_{\mathrm{f}} \cdot \hat{\mathbf{n}} \quad \text { (First Law) } \\
& =q_{\mathrm{w}} \\
& \approx\left\langle\bar{\eta}_{\mathrm{c}}^{\text {iso }}\right\rangle\left[T_{\mathrm{s}}\right] \cdot\left(T_{\mathrm{s}}-T_{\infty}\right)
\end{aligned}
$$

if isothermal wall condition is approximately satisfied.
Condition for approximately isothermal wall: or

$$
\mathrm{Bi}_{\mathrm{c}}\left[T_{\mathrm{w}}\right](\text { Biot Number }) \equiv \frac{\left\langle\bar{\eta}_{\mathrm{c}}^{\mathrm{iso}}\right\rangle\left[T_{\mathrm{w}}\right] \mathcal{L}}{k_{\mathrm{s}}} \gg 1
$$

for \mathcal{L} an appropriate length scale in solid body.
Argument: $\frac{k_{s}(\Delta T)_{\text {in } \mathcal{B}}}{\mathcal{L}} \approx\left\langle\bar{\eta}_{\mathrm{c}}^{\text {iso }}\right\rangle\left[T_{\mathrm{w}}\right] \cdot\left(T_{\mathrm{w}}-T_{\infty}\right) \Rightarrow T_{\mathrm{w}} \rightarrow T_{\infty}$.

Given heat source $Q_{\text {source }}$ in solid body, measure wall temperature at several locations, $\left\{T_{\mathrm{w}}\right\}$, measure farfield fluid temperature, T_{∞},
evaluate $\left\langle\bar{\eta}_{c}^{\text {iso }}\right\rangle\left[T_{w}^{\text {avg }}\right]=\frac{Q_{\text {source }}}{\left|\Gamma_{w}\right|\left(T_{w}^{\text {vg }}-T_{\infty}\right)}$.
Confirm condition for isothermal wall:
theory: $\mathrm{Bi}_{\mathrm{c}}\left[T_{\mathrm{w}}^{\text {avg }}\right]$ (Biot Number) $\equiv \frac{\left\langle\bar{\eta}_{\mathrm{c}}^{\text {iso }}\right\rangle\left[T_{\mathrm{w}}^{\text {avg }}\right] \mathcal{L}}{k_{\mathrm{s}}} \ll 1$;
experiment: $\operatorname{std} _\operatorname{dev}\left\{T_{w}\right\} \ll\left|T_{w}-T_{\infty}\right|$.

HTC $_{c}$ Functions: Experimental Correlations

For given HTC_{c} configuration:
Introduce length scale associated with $\Gamma_{\mathrm{w}}, \mathcal{B}: \ell$.
Form nondimensional groups:

$$
\begin{aligned}
\left\langle\overline{\mathrm{Nu}}_{\ell}\right\rangle & \equiv \frac{\left\langle\bar{\eta}_{\mathrm{c}}^{\mathrm{iso}}\right\rangle\left[T_{\mathrm{w}}\right] \ell}{k_{\mathrm{f}}} ; \\
\mathrm{Ra}_{\ell}^{\mathrm{w}} & \equiv \frac{g \beta\left|T_{\mathrm{w}}-T_{\infty}\right| \ell^{3}}{\alpha_{\mathrm{f}} \nu}, \operatorname{Pr} \equiv \frac{\nu}{\alpha_{\mathrm{f}}} .
\end{aligned}
$$

Define parameter: $\mu \equiv\left(\operatorname{Ra}_{\ell}^{\mathrm{w}}, \operatorname{Pr}\right) \in \mathcal{P} \subset \mathbb{R}_{+}^{2}$.
Fit to data: $\mathbb{F}_{\mathrm{HTC}}{ }_{\mathrm{c}}: \mu \in \mathcal{P} \mapsto\left\langle\overline{\mathrm{Nu}}_{\ell}\right\rangle \in \mathbb{R}_{+}$;

$$
\left\langle\bar{\eta}_{\mathrm{c}}^{\mathrm{iso}}\right\rangle\left[T_{\mathrm{w}}\right]=\frac{k_{\mathrm{f}}}{\ell}\langle\overline{\mathrm{Nu}}\rangle
$$

The Dunk(ing) Problem
Conjugate Framework Convection Heat Transfer Coefficient

Classical (HTC) Framework

Example: HTC Correlation - Vertical Plate

Figure 8.3 The correlation of \bar{h} data for vertical isothermal surfaces by Churchill and Chu [8.3], using $\mathrm{Nu}_{L}=\mathrm{fn}\left(\mathrm{Ra}_{L}, \operatorname{Pr}\right)$. (Applies to full range of Pr.)

Extension: orientation relative to gravity, $\left(\theta_{g}, \varphi_{g}\right)$.

Example: HTC_{c} Correlation - Horizontal Cylinder

Figure 8.6 The data of many investigators for heat transfer from isothermal horizontal cylinders during natural convection, as correlated by Churchill and Chu [8.8].

Stefan-Boltzmann Law: Graybodies

Wall flux: for convex body in large enclosure

$$
\left.\begin{array}{rl}
q_{\mathrm{w}}=\left\langle\bar{\eta}_{\mathrm{c}}^{\mathrm{so}}\right\rangle[& \left.T_{\mathrm{w}}\right](
\end{array} T_{\mathrm{w}}-T_{\infty}\right)+,
$$

Stefan-Boltzmann Law: Graybodies

Wall flux: for convex body in large enclosure

$$
\begin{aligned}
q_{\mathrm{w}}=\left\langle\bar{\eta}_{\mathrm{c}}^{\mathrm{iso}}\right\rangle\left[T_{\mathrm{w}}\right](& \left.T_{\mathrm{w}}-T_{\infty}\right)+ \\
& \varepsilon_{\mathrm{r}} \sigma_{\mathrm{SB}}\left(T_{\mathrm{w}}^{2}+T_{\infty}^{2}\right)\left(T_{\mathrm{w}}^{2}-T_{\infty}^{2}\right)
\end{aligned}
$$

Stefan-Boltzmann Law: Graybodies

Wall flux: for convex body in large enclosure

$$
\begin{aligned}
q_{\mathrm{w}}=\left\langle\bar{\eta}_{\mathrm{c}}^{\mathrm{iso}}\right\rangle\left[T_{\mathrm{w}}\right] & \left(T_{\mathrm{w}}-T_{\infty}\right)+ \\
& \quad \varepsilon_{\mathrm{r}} \sigma_{\mathrm{SB}}\left(T_{\mathrm{w}}^{2}+T_{\infty}^{2}\right)\left(T_{\mathrm{w}}+T_{\infty}\right)\left(T_{\mathrm{w}}-T_{\infty}\right) ;
\end{aligned}
$$

Stefan-Boltzmann Law: Graybodies

Wall flux: for convex body in large enclosure

$$
\begin{aligned}
& q_{\mathrm{w}}=\left\langle\bar{\eta}_{\mathrm{c}}^{\mathrm{iso}}\right\rangle\left[T_{\mathrm{w}}\right]\left(T_{\mathrm{w}}-T_{\infty}\right)+ \\
& \tilde{q}_{\mathrm{w}}=\overbrace{\left(\tilde{\eta}_{\mathrm{c}}+\tilde{\eta}_{\mathrm{r}}\right)}^{\tilde{\eta}}\left(T_{\mathrm{w}}-T_{\infty}\right) .
\end{aligned}
$$

Nonlinear Case: $\tilde{\eta}^{\mathrm{nlin}}\left(T_{\mathrm{w}}\right)$

$$
\tilde{\eta}_{\mathrm{c}}^{\mathrm{nlin}}=\left\langle\bar{\eta}_{\mathrm{c}}^{\mathrm{iso}}\right\rangle\left[T_{\mathrm{w}}\right] ; \tilde{\eta}_{\mathrm{r}}^{\mathrm{nlin}}=\varepsilon_{\mathrm{r}} \sigma_{\mathrm{SB}}\left(T_{\mathrm{w}}^{2}+T_{\infty}^{2}\right)\left(T_{\mathrm{w}}+T_{\infty}\right) .
$$

Linear(ized) Case: $\tilde{\eta}^{\text {lin }}\left(T_{\text {lin,c }}, T_{\text {lin, } \mathrm{r}}\right)$

$$
\tilde{\eta}_{\mathrm{c}}^{\text {lin }}=\left\langle\bar{\eta}_{\mathrm{c}}^{\text {iso }}\right\rangle\left[T_{\text {lin, }, \mathrm{c}}\right] ; \tilde{\eta}_{\mathrm{r}}^{\text {lin }}=\varepsilon_{\mathrm{r}} \sigma_{\mathrm{SB}}\left(T_{\text {lin }, \mathrm{r}}^{2}+T_{\infty}^{2}\right)\left(T_{\text {lin }, \mathrm{r}}+T_{\infty}\right) .
$$

where (say) $T_{\text {lin }, \mathrm{c}}=T_{\text {lin }, \mathrm{r}}=T_{\mathrm{i}}$.

Formulation

Small-Biot Regime

Motivation and Notation

P Phan 2.51

An Idealized Configuration

Let $\Omega \subset \mathbb{R}^{3}, \bar{\Omega}=\overline{\Omega_{\mathrm{s}}} \cup \overline{\Omega_{\mathrm{f}}}$:
$\Omega_{\mathrm{f}} \equiv$ fluid (air) domain: effectively infinite;
$\Omega_{\mathrm{s}} \equiv$ solid domain: convex, (single, scale) parameter ℓ;

$$
\Gamma_{\mathrm{sf}} \equiv \overline{\Omega_{\mathrm{s}}} \cap \overline{\Omega_{\mathrm{f}}} \backslash \overline{\Gamma_{\mathrm{s}}^{\mathrm{ad}}} ;
$$

$$
\partial \Omega_{\mathrm{s}} \equiv \overline{\Gamma_{\mathrm{sf}}} \cup \overline{\Gamma_{\mathrm{s}}^{\mathrm{ad}}}
$$

uniformly large enclosure: $\operatorname{dist}\left(\Omega_{\mathrm{s}}, \partial \Omega\right) \gg \ell$;
coordinate system: $x \equiv\left(x_{1}, x_{2}, x_{3}\right),\left\{\mathbf{e}_{i}\right\}_{i} ;$ gravity $\mathbf{g}=-g \mathbf{e}_{2}$.
Initial conditions: $\left.T\right|_{\Omega_{\mathrm{s}}} \equiv T_{\mathrm{s}}=T_{\mathrm{i}}$ uniform, $\left.T\right|_{\Omega_{\mathrm{f}}} \equiv T_{\mathrm{f}}=T_{\infty}$; assume $T_{\mathrm{i}}>T_{\infty}$ (wlog).

Farfield conditions: quiescent fluid; $T_{f}=T_{\infty}($ on $\partial \Omega)$ - implicit.

Governing Equations: Dimensional

Temperature $T_{\mathrm{s}}(x, t)$ satisfies

$$
\begin{aligned}
\frac{\partial T_{\mathrm{s}}}{\partial t} & =\alpha_{\mathrm{s}} \nabla^{2} T_{\mathrm{s}} \quad \text { in } \Omega_{\mathrm{s}}, t>0, \\
\underbrace{-k_{\mathrm{s}} \nabla T_{\mathrm{s}} \cdot \hat{\mathbf{n}}}_{\text {Fourier's Law }} & =\underbrace{\tilde{\eta}^{\operatorname{lin}}\left(T_{\mathrm{i}}, T_{\mathrm{i}}\right)}_{\text {HTC }}\left(T_{\mathrm{s}}-T_{\infty}\right) \quad \text { on } \partial \Omega_{\mathrm{s}} \equiv \Gamma_{\mathrm{sf}}, t>0, \\
T_{\mathrm{s}}(\cdot, t=0) & =T_{\mathrm{i}} \quad \text { in } \Omega_{\mathrm{s}} .
\end{aligned}
$$

Dunk pPDE: $\mathbb{M}^{[1]}\left[\Omega_{s}^{\text {geo }}\right]$, geo $\in\{P, C, S\}$

$$
\begin{aligned}
& \mu^{[1]} \equiv\left(\text { geo }, \ell, \alpha_{\mathrm{s}}, k_{\mathrm{s}}, \tilde{\eta}^{\text {lin }}, T_{\infty}, T_{\mathrm{i}}, t_{\text {final }}\right) \in \mathcal{P}^{[1]} \\
& \mapsto T_{\mathrm{s}}(x, t), x \in \Omega_{\mathrm{s}}, t \in\left(0, t_{\text {final }]} ; \circ=0^{[1]}\left(T_{\mathrm{s}}\right) .\right.
\end{aligned}
$$

Here $0^{[1]}$ is a linear bounded output functional.
Remark Dimensional formulation for expositional convenience.

Governing Equation

Let $\mathrm{Bi}^{\text {dunk }} \equiv \frac{\tilde{\eta}^{\text {lin }}\left|\Omega_{\mathrm{s}}\right|}{k_{\mathrm{s}}\left|\Gamma_{\mathrm{sf}}\right|}$.
For $\mathrm{Bi}^{\text {dunk }} \ll 1, T_{\mathrm{s}}(x, t) \approx \hat{T}_{\mathrm{s}}(t)$ satisfies

$$
\frac{k_{\mathrm{s}}}{\alpha_{\mathrm{s}}}\left|\Omega_{\mathrm{s}}\right| \frac{d\left(\hat{T}_{\mathrm{s}}-T_{\infty}\right)}{d t}+\tilde{\eta}^{\text {lin }}\left|\Gamma_{\mathrm{sf}}\right|\left(\hat{T}_{\mathrm{s}}-T_{\infty}\right)=0
$$

subject to $\left(\hat{T}_{\mathrm{s}}-T_{\infty}\right)(t=0)=\left(T_{\mathrm{i}}-T_{\infty}\right)$.
Dunk pPDE: $\mathbb{M}^{[1]}[-]$, geo = LUMPED

$$
\begin{aligned}
& \mu^{[1]} \equiv\left(\text { geo, }\left|\Omega_{\mathrm{s}}\right|,\left|\Gamma_{\mathrm{sf}}\right|, k_{\mathrm{s}}, \alpha_{\mathrm{s}}, \tilde{\eta}_{\text {lin }}, T_{\infty}, T_{\mathrm{i}}, t_{\text {final }}\right) \in \mathcal{P}^{[1]} \\
& \mapsto \hat{T}_{\mathrm{s}}(t), t \in\left(0, t_{\text {final }}\right] ; \circ=0^{[1]}\left(\hat{T}_{\mathrm{s}}\right) .
\end{aligned}
$$

Here $0^{[1]}$ is a linear output functional.
Remark pMOR (parametrized Model Order Reduction).

Heat Transfer 101

the Fin Problem

The Fin Problem

Motivation and Notation

An Idealized Configuration

Let $\Omega \subset \mathbb{R}^{3}, \bar{\Omega}=\overline{\Omega_{\mathrm{s}}} \cup \overline{\Omega_{\mathrm{f}}}$:
$\Omega_{\mathrm{f}} \equiv$ fluid domain: effectively of infinite extent, $\partial \Omega_{\mathrm{f}}=\partial \Omega$;
$\Omega_{\mathrm{s}} \equiv$ solid domain: $\overline{\Omega_{\mathrm{s}}} \equiv \overline{\Omega_{\mathrm{s-}}}\left(x_{1} \leq 0\right) \cup \overline{\Omega_{\mathrm{s}+}}\left(x_{1} \geq 0\right)$;
$\Omega_{\mathrm{s}+} \equiv$ Right Cylinder $\left\{0<x_{1}<L,\left(x_{2}, x_{3}\right) \in \mathcal{D}_{\mathrm{cs}}\right\}$:
$\mathcal{D}_{\mathrm{cs}} \equiv$ cross section: convex; area A_{cs}, perimeter P_{cs}; $\left.\partial \Omega_{\mathrm{s}+} \equiv \overline{\Gamma_{\mathrm{sr}}} \cup \overline{\Gamma_{\mathrm{sf}}} \cup \overline{\Gamma_{\mathrm{st}}}: \Gamma_{\mathrm{sf}} \equiv\right] 0, L\left[\times \partial \mathcal{D}_{\mathrm{cs}}, P_{\mathrm{cs}} L / A_{\mathrm{cs}} \gg 1\right.$;
uniformly large enclosure: $\operatorname{dist}\left(\Omega_{\mathrm{s}}, \partial \Omega\right) \gg \ell$;
coordinate system: $x \equiv\left(x_{1}, x_{2}, x_{3}\right),\left\{\mathbf{e}_{i}\right\}_{i} ;$ gravity $\mathbf{g}=-g \mathbf{e}_{3} ;$
Farfield conditions: quiescent fluid; $T_{\mathrm{f}}=T_{\infty}($ on $\partial \Omega)$ - implicit. Insulated Tip: $-k_{\mathrm{s}} \frac{\partial T_{\mathrm{s}}}{\partial x_{1}}=0$ on Γ_{st}, natural - implicit.

Temporal Stages

Stage I. Steady-State: $T_{s}^{s s}(x)$
estimate or measure steady-state temperature over $\Gamma_{\text {sr }}$,

$$
\bar{T}_{\text {root }}\left(>T_{\infty}, \text { wlog }\right) \text { uniform; }
$$

predict temperature $T_{\mathrm{s}}^{\mathrm{ss}}(x) \equiv T_{\mathrm{s}}(x, t \rightarrow \infty), x \in \Omega_{\mathrm{s}+}$.
Stage II. Cooldown: $T_{\mathrm{s}}^{\mathrm{cd}}(x, t)$
impose zero flux boundary condition on $\Gamma_{\text {sr }}$;
provide initial condition,

$$
T_{\mathrm{s}}^{\mathrm{cd}}(x, t=0)=T_{\mathrm{s}}^{\mathrm{ss}}(x), x \in \Omega_{\mathrm{s}+}(\text { reset time }) ;
$$

predict temperature $T_{\mathrm{s}}^{\mathrm{cd}}(x, t), x \in \Omega_{\mathrm{s}+}, t>0$.
Notation: - denotes spatial average over cross section.

Governing Equations: Dimensional

Steady-State Stage

Temperature $T_{\mathrm{s}} \equiv T_{\mathrm{s}}^{\mathrm{ss}}(x)$ satisfies

$$
\begin{aligned}
-k_{\mathrm{s}} \nabla^{2} T_{\mathrm{s}} & =0 \text { in } \Omega_{\mathrm{s}+}, \\
\underbrace{-k_{\mathrm{s}} \nabla T_{\mathrm{s}} \cdot \hat{\mathbf{n}}}_{\text {Fourier's Law }} & =\underbrace{\tilde{\eta}^{\text {lin }}\left(\bar{T}_{\text {root }}, \bar{T}_{\text {root }}\right)}_{\text {HTC }}\left(T_{\mathrm{s}}-T_{\infty}\right) \text { on } \Gamma_{\mathrm{sf}}, \\
T_{\mathrm{s}} & =\bar{T}_{\text {root }} \text { on } \Gamma_{\mathrm{sr}}, \\
-k_{\mathrm{s}} \nabla T_{\mathrm{s}} \cdot \hat{\mathbf{n}} & =0 \text { (insulated tip) on } \Gamma_{\mathrm{st}} .
\end{aligned}
$$

Cooldown Stage: incorporate $\frac{\partial T_{\mathrm{s}}}{\partial t}$ and initial condition $T_{\mathrm{s}}^{\mathrm{ss}}$.

Governing Equations: Dimensional

Let $\mathrm{Bi}^{\mathrm{fin}} \equiv \frac{\tilde{\eta}^{\mathrm{lin}^{\mathrm{ln}}} A_{\mathrm{cs}}}{k_{\mathrm{s}} P_{\mathrm{cs}}}$.

$$
\begin{aligned}
& \text { For } \mathrm{Bi}^{\text {fin }} \ll 1, \frac{P_{\mathrm{cs}} L}{A_{\mathrm{cs}}} \gg 1, T_{\mathrm{s}}(x) \approx \hat{T}_{\mathrm{s}}\left(x_{1}\right) \text { satisfies } \\
& \begin{array}{l}
-k_{\mathrm{s}} A_{\mathrm{cs}} \frac{d\left(\hat{T}_{\mathrm{s}}-T_{\infty}\right)}{d x_{1}^{2}}+\eta^{\operatorname{lin}} P_{\mathrm{cs}}\left(\hat{T}_{\mathrm{s}}-T_{\infty}\right)=0,0<x_{1}<L, \\
\\
\quad \hat{T}_{\mathrm{s}}=\bar{T}_{\text {root }} \text { at } x_{1}=0,-k_{\mathrm{s}} \frac{d\left(\hat{T}_{\mathrm{s}}-T_{\infty}\right)}{d x_{1}}=0 \text { at } x_{1}=L .
\end{array}
\end{aligned}
$$

Fin pPDE: $\mathbb{M}^{[2]}$

$$
\begin{aligned}
\mu^{[2]} \equiv\left(k_{\mathrm{s}}, A_{\mathrm{cs}}, P_{\mathrm{cs}}, \tilde{\eta}^{\mathrm{lin}}, T_{\infty}\right) & \in \mathcal{P}^{[2]} \\
& \mapsto \hat{T}_{\mathrm{s}}\left(x_{1}\right), 0 \leq x_{1} \leq L ; \circ=0^{[2]}\left(\hat{T}_{\mathrm{s}}\right) .
\end{aligned}
$$

Here $0^{[2]}$ is a linear output functional.

Weak Form

$$
\text { Let } \begin{aligned}
X^{\mathrm{E}} & =\left\{v \in H^{1}\left(\Omega_{\mathrm{s}+}\right)|v|_{\mathrm{rsr}}=\bar{T}_{\text {root }}\right\} \\
X & =\left\{v \in H^{1}\left(\Omega_{\mathrm{s}+}\right)|v|_{\Gamma_{\text {sr }}}=0\right\} .
\end{aligned}
$$

Then $T_{\mathrm{s}} \in X^{\mathrm{E}}$ satisfies

$$
\int_{\Omega_{\mathrm{s}+}} k_{\mathrm{s}} \nabla\left(T_{\mathrm{s}}-T_{\infty}\right) \cdot \nabla v+\eta^{\operatorname{lin}} \int_{\Gamma_{\mathrm{sf}}}\left(T_{\mathrm{s}}-T_{\infty}\right) v=0, \forall v \in X
$$

Let $\hat{X}^{\mathrm{E}}=\left\{v \in X^{\mathrm{E}} \mid v\right.$ function of x_{1} only $\} \subset X^{\mathrm{E}}$

$$
\hat{X}=\left\{v \in X \mid v \text { function of } x_{1} \text { only }\right\} \subset X .
$$

Find $\hat{T}_{\mathrm{s}} \in \hat{X}^{\mathrm{E}}$ such that
optimal in energy norm

$$
\int_{\Omega_{\mathrm{s}+}} k_{\mathrm{s}} \nabla\left(\hat{T}_{\mathrm{s}}-T_{\infty}\right) \cdot \nabla v+\tilde{\eta}^{\operatorname{lin}} \int_{\Gamma_{\mathrm{sf}}}\left(\hat{T}_{\mathrm{s}}-T_{\infty}\right) v=0, \forall v \in \hat{X} .
$$

Weak Form

$$
\text { Let } \begin{aligned}
X^{\mathrm{E}} & =\left\{v \in H^{1}\left(\Omega_{\mathrm{s}+}\right)|v|_{\mathrm{r}_{\mathrm{sr}}}=\bar{T}_{\text {root }}\right\} \\
X & =\left\{v \in H^{1}\left(\Omega_{\mathrm{s}+}\right)|v|_{\Gamma_{\mathrm{sr}}}=0\right\} .
\end{aligned}
$$

Then $T_{\mathrm{s}} \in X^{\mathrm{E}}$ satisfies

$$
\int_{\Omega_{\mathrm{s}+}} k_{\mathrm{s}} \nabla\left(T_{\mathrm{s}}-T_{\infty}\right) \cdot \nabla v+\eta^{\operatorname{lin}} \int_{\Gamma_{\mathrm{sf}}}\left(T_{\mathrm{s}}-T_{\infty}\right) v=0, \forall v \in X
$$

Let $\hat{X}^{\mathrm{E}}=\left\{v \in X^{\mathrm{E}} \mid v\right.$ function of x_{1} only $\} \subset X^{\mathrm{E}}$

$$
\hat{X}=\left\{v \in X \mid v \text { function of } x_{1} \text { only }\right\} \subset X .
$$

Find $\hat{T}_{\mathrm{s}} \in \hat{X}^{\mathrm{E}}$ such that
optimal in energy norm

$$
\begin{aligned}
k_{\mathrm{s}} A_{\mathrm{cs}} \int_{0}^{L} \frac{d\left(\hat{T}_{\mathrm{s}}-T_{\infty}\right)}{d x_{1}} \frac{d v}{d x_{1}} d x_{1}+\tilde{\eta}^{\operatorname{lin}} P_{\mathrm{cs}} \int_{0}^{L}\left(\hat{T}_{\mathrm{s}}-\right. & \left.T_{\infty}\right) v d x_{1} \\
& =0, \forall v \in \hat{X}
\end{aligned}
$$

Heat Transfer
 Back-of-the Envelope (BE) Framework

Formulation

General Form

Given
solid artifact A from set of artifacts (or natural objects); environment;
environment conditions E from set of environment conditions;
process applied to artifact;
process conditions P from set of process conditions;
output operator $0: X\left(\Omega_{\mathrm{s}}^{\mathrm{A}}\right) \rightarrow Y$;
provide
numeric estimate for output, $\mathrm{o}^{\text {est }} \approx \mathrm{O}\left(T_{\mathrm{s}}^{\text {phy }}(\mathrm{A}, \mathrm{E}, \mathrm{P})\right)$
quantitative justification for proposed answer.
Remark Problem Statement is non-prescriptive.

General Form

Given Teacher

solid artifact A from set of artifacts (or natural objects); environment;
environment conditions E from set of environment conditions; process applied to artifact; process conditions P from set of process conditions; output operator $0: X\left(\Omega_{\mathrm{s}}^{\mathrm{A}}\right) \rightarrow Y$;
provide
numeric estimate for output, $\mathrm{o}^{\text {est }} \approx \mathrm{O}\left(T_{\mathrm{s}}^{\text {phy }}(\mathrm{A}, \mathrm{E}, \mathrm{P})\right)$
quantitative justification for proposed answer.
Remark Problem Statement is non-prescriptive.

General Form

Given Teacher

solid artifact A from set of artifacts (or natural objects); environment;
environment conditions E from set of environment conditions; process applied to artifact; process conditions P from set of process conditions; output operator $0: X\left(\Omega_{\mathrm{s}}^{\mathrm{A}}\right) \rightarrow Y$; provide Student: BE Single-Screen Script numeric estimate for output, $\mathrm{o}^{\text {est }} \approx \mathrm{O}\left(T_{\mathrm{s}}^{\text {phy }}(\mathrm{A}, \mathrm{E}, \mathrm{P})\right)$ quantitative justification for proposed answer.

Remark Problem Statement is non-prescriptive.

Summary

1. Material property function: material $\mapsto k_{\mathrm{s}}, \alpha_{\mathrm{s}}, k_{\mathrm{f}}, \alpha_{\mathrm{f}}, \nu, \beta, \varepsilon_{\mathrm{r}}$.
2. Set of convection heat transfer coefficient $\left(\mathrm{HTC}_{\mathrm{c}}\right)$ functions

$$
\mathbb{S}_{\text {HTC }} \equiv\left\{\text { Plate }\left(\theta_{g}\right), \text { Circular Cylinder, Sphere }\right\}
$$

for forced and natural convection.
3. Set of radiation heat transfer coefficient $\left(\mathrm{HTC}_{r}\right)$ functions

$$
\mathbb{S}_{\mathrm{HTC}}^{r} \boldsymbol{} \equiv\{\text { Parallel Plates, Convex Body in Enclosure }\}
$$

for graybody heat exchange.
4. Set of pPDE models

$$
\mathbb{S}_{\text {pPDEs }} \equiv\left\{\mathbb{M}^{[1]}, \mathbb{M}^{[2]}, \mathbb{M}^{[3]}, \mathbb{M}^{[4]}\right\}
$$

for heat transfer in solid body in communication with environment.

Summary

1. Material property function: material $\mapsto k_{\mathrm{s}}, \alpha_{\mathrm{s}}, k_{\mathrm{f}}, \alpha_{\mathrm{f}}, \nu, \beta, \varepsilon_{\mathrm{r}}$.
2. Set of convection heat transfer coefficient $\left(\mathrm{HTC}_{\mathrm{c}}\right)$ functions

$$
\mathbb{S}_{\text {HTC }} \equiv\left\{\text { Plate }\left(\theta_{g}\right), \text { Circular Cylinder, Sphere }\right\}
$$

for forced and natural convection. Nu (sselt) pPDE models
3. Set of radiation heat transfer coefficient $\left(\mathrm{HTC}_{r}\right)$ functions

$$
\mathbb{S}_{\mathrm{HTC}}^{r} \boldsymbol{} \equiv\{\text { Parallel Plates, Convex Body in Enclosure }\}
$$

for graybody heat exchange.
4. Set of pPDE models

$$
\mathbb{S}_{\text {pPDEs }} \equiv\left\{\mathbb{M}^{[1]}, \mathbb{M}^{[2]}, \mathbb{M}^{[3]}, \mathbb{M}^{[4]}\right\}
$$

for heat transfer in solid body in communication with environment.

$\mathbb{S}_{\text {pPDEs }}$: Set of pPDEs

$\mathbb{M}^{[1]}:$ Dunk(ing)

$$
\begin{array}{ll}
\mathbb{M}^{[1]}[-] & \text { geo }=\text { LUMPED } ; \quad \text { Bi }^{\text {dunk }} \ll 1 \\
\mathbb{M}^{[1]}\left[\Omega_{\mathrm{s}}^{P}\right] & \text { geo } \left.=P: \Omega_{\mathrm{s}}^{P} \equiv\right]-\ell, \ell\left[\times \mathcal{D}^{\text {ad }} ;\right. \\
\mathbb{M}^{[1]}\left[\Omega_{\mathrm{s}}^{C}\right] & \text { geo }=C: \Omega_{\mathrm{s}}^{C} \equiv\left\{\left(x_{1}^{2}+x_{2}^{2}\right)<\ell^{2}\right\} \times \mathcal{D}^{\text {ad }} ; \\
\mathbb{M}^{[1]}\left[\Omega_{\mathrm{s}}^{S}\right] & \text { geo }=S: \Omega_{\mathrm{s}}^{S} \equiv\left\{\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)<\ell^{2}\right\} .
\end{array}
$$

$\mathbb{M}^{[2]}:$ Fin.

$$
\mathrm{Bi}^{\mathrm{fin}} \ll 1
$$

$\mathbb{M}^{[3]}:$ Wall.
$\mathbb{M}^{[4]}$: Semi-Infinite Body.
Remark PDE complexity: IBVP in time and one spatial coordinate.

Transformation Framework

No Composition

Given PS, define notional "truth" PDE model:

$$
\mathbb{M}^{\mathrm{PS}}:(\mathrm{A}, \mathrm{E}, \mathrm{P}) \mapsto \Omega_{s}^{\mathrm{A}}, T_{\mathrm{s}}^{\text {phy }}, \mathrm{o}^{\text {phy }}=\mathrm{O}\left(T_{\mathrm{s}}^{\text {phy }}\right) ;
$$

in general, \mathbb{M}^{PS} can not (certainly will not) be evaluated.
Notation: ${ }^{\text {phy }}$ denotes noise-free measurement of physical artifact.

Transformation Framework

No Composition

Given PS, define notional "truth" PDE model:

$$
\mathbb{M}^{\mathrm{PS}}:(\mathrm{A}, \mathrm{E}, \mathrm{P}) \mapsto \Omega_{s}^{\mathrm{A}}, T_{\mathrm{s}}^{\text {phy }}, o^{\text {phy }}=0\left(T_{\mathrm{s}}^{\text {phy }}\right)
$$

in general, \mathbb{M}^{PS} can not (certainly will not) be evaluated.
Notation: phy denotes noise-free measurement of physical artifact.
Choose

$$
\begin{aligned}
& \bar{n} \in\{1, \ldots, 4\}: \text { a pPDE } \mathbb{M}^{[\bar{n}]} \in \mathbb{S}_{\text {pPDEs }} \text { model selection } \\
& \bar{\mu}^{[\bar{n}]} \in \mathcal{P}^{[\bar{n}]} \text { associated to } \mathbb{M}^{[\bar{n}]} \text { parameter selection }
\end{aligned}
$$

such that

$$
\mathrm{o}^{\text {est }} \equiv \mathrm{o}^{[\bar{n}]}=0^{[\bar{n}]}\left(T_{\mathrm{s}}^{[\overline{[}]}\left(\bar{\mu}^{[\bar{n}]}\right)\right) \approx{o^{\text {phy }} ; ~}_{\text {pr }}
$$

or declare that Problem Statement is "outside envelope."

Transformation Framework

No Composition

Given PS, define notional "truth" PDE model:

$$
\mathbb{M}^{\mathrm{PS}}:(\mathrm{A}, \mathrm{E}, \mathrm{P}) \mapsto \Omega_{s}^{\mathrm{A}}, T_{\mathrm{s}}^{\text {phy }}, \mathrm{o}^{\text {phy }}=\mathrm{O}\left(T_{\mathrm{s}}^{\text {phy }}\right)
$$

in general, \mathbb{M}^{PS} can not (certainly will not) be evaluated.
Notation: ${ }^{\text {phy }}$ denotes noise-free measurement of physical artifact.
Choose
$\bar{n} \in\{1, \ldots, 4\}:$ a pPDE $\mathbb{M}^{[\bar{n}]} \in \mathbb{S}_{\text {pPDEs }}$ model selection $\bar{\mu}^{[\bar{n}]} \in \mathcal{P}^{[\bar{n}]}$ associated to $\mathbb{M}^{[\bar{n}]}$ parameter selection
such that

$$
\mathrm{o}^{\text {est }} \equiv \mathrm{o}^{[\bar{n}]}=0^{[\bar{n}]}\left(T_{\mathrm{s}}^{[\bar{n}]}\left(\bar{\mu}^{[\bar{n}]}\right)\right) \approx \mathrm{o}^{\text {phy }} ;
$$

or declare that Problem Statement is "outside envelope."
Approach: classification PS (A,E,P,O) $\mapsto \bar{n}, \mathbb{M}^{[\bar{n}]}$ preliminary; simplification $\mathbb{M}^{\mathrm{PS}} \mapsto \mathbb{M}^{[\bar{n}]}\left(\bar{\mu}^{[\bar{n}]}\right)$ and confirm \bar{n}.

Techniques

Replace Conjugate Framework with Classical Framework.
Modify
Geometry
Materials and Thermophysical Properties
Initial and Boundary Conditions
Heat Transfer Coefficients: $\mathrm{HTC}_{\mathrm{c}}, \mathrm{HTC}_{r}$.
Apply (Parametrized) Model Order Reduction

- Dimensionality Reduction

Justifications

Invoke PDE (and domain) knowledge:
order-of-magnitude estimates,
stability and perturbation results,
asymptotic analysis,
closed-form solutions,
approximation theory,
variational methods, computational studies, experimental observations,
often with sign information for ($0^{\text {est }}-o^{\text {phy }}$).

Requirements \rightarrow

and Applications

BE Instruction Set functions are shared by large community: continual verification.

BE Instruction Set functions are encapsulated: blunder prevention.

BE Instruction Set functions are fast: rapid response for design and optimization.

BE Code is transparent:
assessment of proposed output estimate, o ${ }^{\text {est }}$; blunder detection.

Requirements \rightarrow

and Applications

BE Instruction Set functions are shared by large community: continual verification.

BE Instruction Set functions are encapsulated: blunder prevention.

BE Instruction Set functions are fast: rapid response for design and optimization.

BE Code is transparent:
assessment of proposed output estimate, o ${ }^{\text {est }}$; blunder detection within BE Code.

Requirements \rightarrow

and Applications

BE Instruction Set functions are shared by large community: continual verification.

BE Instruction Set functions are encapsulated: blunder prevention.

BE Instruction Set functions are fast: rapid response for design and optimization.

BE Code is transparent:
assessment of proposed output estimate, o ${ }^{\text {est. }}$; blunder detection of large-scale simulation.

Heat Transfer
 Back-of-the-Envelope Framework

Examples of Parameter Selection: Truth Model Simplification

Artifact and Environment

Artifact: Bagelhalf

Environment: Kitchen; $T_{\infty} \approx 20^{\circ} \mathrm{C}$.
Remark Proximity of bagelhalf to back wall.

Process and Outputs

Process:

1. Remove Bagelhalf from toaster.
2. Place Bagelhalf on cooling rack in vertical orientation.
3. Measure Bagelhalf (mid-radius) surface temperature:

$$
T_{\text {surface }}^{\text {Bagelhalf }}(t=0) \equiv T_{\mathrm{i}} \approx 135^{\circ} \mathrm{C} .
$$

Output:
Temperature $T_{\text {surface }}^{\text {Bagelhalf }}(t), t>0$.
Validation Experiment:
Measure with IR thermometer $T_{\text {surface }}^{\text {Bagelhalf }}(t), t>0$.

Key Simplifications

Modifications to Truth PDE:
Conjugate \rightarrow Classical
Geometry: $\left.\Omega_{\mathrm{s}} \equiv\right]-\ell, \ell[\times \mathcal{D} ; \mathcal{D} \equiv] 0, L_{\text {horiz }}[\times] 0, L_{\text {vert }}[$. Justification: material addition small in relevant metrics.

Boundary Conditions: lateral surfaces $]-\ell, \ell[\times \partial \mathcal{D}$ insulated. Justification: large aspect ratio.

Regime: $\mathrm{Bi}^{\text {dunk }} \approx 0.5$ not small:

$$
\text { apply } \mathbb{M}^{[1]}\left[\Omega_{\mathrm{s}}^{\text {geo }=\text { Parallelepiped }}\right] — \operatorname{IBVP}\left(x_{1}, t\right) .
$$

Convection HTC: Vertical Plates, $L_{\text {eff }}=L_{\text {vert }} ; T_{\text {lin }, \mathrm{c}}=T_{\mathrm{i}}$.
Radiation HTC: Convex graybody in enclosure; $\varepsilon_{\mathrm{r}}=0.96$;

$$
T_{\mathrm{lin}, \mathrm{r}}=T_{\mathrm{i}}(\mathrm{UB}) ; T_{\mathrm{lin}, \mathrm{r}}=T_{\infty}(\mathrm{LB}) ;
$$

Problem Statement Back-of-the-Envelope
Assessment

Simplified Geometry

Hot Bagelhalf Cooling: pPDE Dunk
Skillethandle: pPDE Fin

Surface Temperature

Artifact: Cast-Iron Skillethandle

Artifact: Chamfer Details

Remark Sharp corners: (weak) singularities.

Artifact: Cross Section Area and Perimeter

Environment: James Penn's Kitchen

Elements:

- Gas Range
- Cork Trivet on Chair
- IR Camera Jig
- Roomwalls

Temperature of room and roomwalls, $T_{\infty} \approx 22.6^{\circ} \mathrm{C}$.

Process

Sequence of steps:

Stage I: Steady-State

1. Boil water in skilletpan until reach steady state.
2. Remove water from skillet pan, and immediately...
3. Measure (or estimate) temperature at skillethandle root, $\bar{T}_{\text {root }} \approx 78.6^{\circ} \mathrm{C}$.

Stage II: Cooldown
4. Place skillet on trivet.

Outputs

Stage I: Steady-Stage

Skillethandle temperature at $t=0$:

$$
\bar{T}_{\mathrm{s}}^{\mathrm{ss}}\left(x_{1}\right), 0 \leq x_{1} \leq L
$$

Stage II: Cooldown

Skillethandle root temperature for $t>0$:

$$
\bar{T}_{\text {root }}^{\mathrm{cd}}(t)=\bar{T}_{\mathrm{s}}^{\mathrm{cd}}\left(x_{1}=0, t\right)
$$

Skillethandle tip temperature for $t>0$:

$$
\bar{T}_{\text {tip }}^{\mathrm{cd}}(t)=\bar{T}_{\mathrm{s}}^{\mathrm{cd}}\left(x_{1}=L, t\right)
$$

Key Simplifications

Modifications to Truth PDE: Conjugate \rightarrow Classical

Geometry: $\Omega_{\mathrm{s}+} \equiv$ right cylinder of circular cross section:

$$
A_{\mathrm{cs}} \equiv \frac{1}{L} \int_{0}^{L} \operatorname{Area}\left(x_{1}\right) d x_{1}, P_{\mathrm{cs}} \equiv \frac{1}{L} \int_{0}^{L} \operatorname{Peri}\left(x_{1}\right) d x_{1}
$$

Justification: material modification small in relevant metrics.
Regime: $\mathrm{Bi}^{\mathrm{fin}} \ll 1, P_{\mathrm{cs}} L / A_{\mathrm{cs}} \gg 1$: apply $\mathbb{M}^{[2]}$.
Convection HTC: Horizontal Cylinder 2-D; $D=D_{\text {eff }} \equiv P_{\mathrm{cs}} / \pi$.
Justification: $D_{\text {eff }}$ preserves boundary-layer length; $\delta^{\mathrm{bl}} \approx \ell /\left\langle\overline{\mathrm{Nu}}_{D}\right\rangle \ll$ fin axial length scale.

Radiation HTC: Convex graybody in enclosure; $\varepsilon_{\mathrm{r}}=0.95$.
Justification: blackbody convex-hull equivalence result.

Validation Temperature Measurements $t=0$ (Stage I)

Hot Bagelhalf Cooling: pPDE Dunk Skillethandle: pPDE Fin

Accuracy: Steady State

$\varepsilon_{\mathrm{r}}=0.95$

Numerical error:

Hot Bagelhalf Cooling: pPDE Dunk Skillethandle: pPDE Fin

Sensitivity to Emissivity

$\varepsilon_{r}=0.50$

Accuracy: Cooldown

Parametrized Model Order Reduction:

Reduced Basis Method [27, 47]
Nusselt Number: Slot Flow
P-H Tsai, Fischer Group, UIUC

Formulation

Temperature Fields
Computational Cost

Motivation: Trombe Wall

M Kessler 2.51

pPDE Wall: Parallel Thermal Resistances in Series

Nusselt Configuration: Air Gap - Idealized

Spatial domain: $\left.\Omega_{\mathrm{f}} \equiv\right]-\ell / 2, \ell / 2[\times]-10 \ell, 10 \ell\left[\subset \mathbb{R}^{2}\right.$;

$$
\left.\Omega_{f}^{*} \equiv\right]-1 / 2,1 / 2[\times] 10,10[.
$$

Boundary conditions (nondimensional):

$$
\begin{aligned}
& \Theta_{\mathrm{f}}=-1 \text { at } x_{1}^{*}=-1 / 2 \text { and } \Theta_{\mathrm{f}}=1 \text { at } x_{1}^{*}=1 / 2 ; \\
& \text { insulated on } x_{2}^{*}=-10 \text { and } x_{2}^{*}=10
\end{aligned}
$$

Variable angle of gravity, $\theta_{g} \in \mathcal{P}_{\theta_{g}} \equiv\left[0,180^{\circ}\right]$: buoyancy force $\Theta_{f}\left(-\mathbf{e}_{1} \cos \theta_{g}+\mathbf{e}_{2} \sin \theta_{g}\right)$.
Nusselt number: $\langle\overline{\mathrm{Nu}}\rangle\rangle\left\langle\left.\frac{1}{2 \cdot 20} \int_{-10}^{10} \frac{\partial \Theta_{\mathrm{f}}}{\partial x_{1}^{*}}\right|_{x_{1}^{*}=-\frac{1}{2}} d x_{2}^{*}\right\rangle$.
Parameter variation:

$$
\left\langle\overline{\mathrm{Nu}}_{\ell}\right\rangle=\left\langle\overline{\mathrm{Nu}}_{\ell}\right\rangle\left(\theta_{g} ; \operatorname{Ra} \mathrm{Ra}_{\ell}, \operatorname{Pr}\right) ; \mathrm{Ra}_{\ell}=10^{3}, \operatorname{Pr}=0.71
$$

Governing Equations: Nondimensional Nusselt pPDE

Find $\left[V^{*} \equiv\left(V_{1}^{*}, V_{2}^{*}, V_{3}^{*}\right), \Theta_{\mathrm{f}}\right]\left(x^{*}, t^{*}\right) \quad \Theta_{\mathrm{f}}\left(\cdot, t^{*}=0\right)=0$ in Ω_{f}^{*}

$$
\begin{aligned}
& \frac{\partial V^{*}}{\partial t^{*}}+V^{*} \cdot \nabla V^{*}=-\nabla p^{*}+\operatorname{Pr}^{\frac{1}{2}}\left(\operatorname{Ra}_{\ell}^{\mathrm{w}}\right)^{-\frac{1}{2}} \nabla^{2} V^{*} \\
& \quad+\Theta_{\mathrm{f}}\left(-\mathbf{e}_{1} \cos \theta_{\mathrm{g}}+\mathbf{e}_{2} \sin \theta_{\mathrm{g}}\right) \text { in } \Omega_{\mathrm{f}}^{*}, t^{*}>0 \\
& \nabla \cdot V^{*}=0 \text { in } \Omega_{\mathrm{f}}^{*}, t^{*}>0 \\
& \frac{\partial \Theta_{\mathrm{f}}}{\partial t^{*}}+V^{*} \cdot \nabla \Theta_{\mathrm{f}}=\operatorname{Pr}^{-\frac{1}{2}}\left(\operatorname{Ra}_{\ell}^{\mathrm{w}}\right)^{-\frac{1}{2}} \nabla^{2} \Theta_{\mathrm{f}} \text { in } \Omega_{\mathrm{f}}^{*}, t^{*}>0 \\
& \Theta_{\mathrm{f}}= \pm 1 \text { at } x_{1}^{*}= \pm 1 / 2 \text { and } \frac{\partial \Theta_{\mathrm{f}}}{\partial n}=0 \text { on } x_{2}^{*}= \pm 10, t^{*}>0
\end{aligned}
$$

Evaluate $\left\langle\overline{N u}_{\ell}\right\rangle \equiv\left\langle\left.\frac{1}{2 \cdot 20} \int_{0}^{20} \frac{\partial \Theta_{\mathrm{f}}}{\partial x_{1}^{*}}\right|_{x_{1}^{*}=0} d x_{2}^{*}\right\rangle$.

$\mathrm{Ra}_{\ell}=10^{3}$: Steady States

$\mathrm{Ra}_{\ell}=10^{4}$: Statistically Stationary States - Future Work

Direct Simulation

Hardware (2-D) 8 processors:
Intel(R) Xeon(R) CPU E5-2620 v3 (a) 2.40 GHz .
Software Nek5000 parallel spectral element code [43, 16].
Computation Time (Wall-Clock)
2-D Spatial Domain, $\left.\Omega_{f}^{*} \equiv\right]-1 / 2,1 / 2[\times[-10,10[$:
$\approx 1.7 \mathrm{~s}$ per C (onvective) T (ime) U (nit)s;
≈ 1000 CTU to reach (statistically) stationary state.

Direct Simulation

Hardware (3-D) 64 processors:
Intel(R) Xeon Phi(TM) CPU 7210 (a) 1.30 GHz .
Software Nek5000 parallel spectral element code [43, 16].
Computation Time (Wall-Clock)
2-D Spatial Domain, $\left.\Omega_{f}^{*} \equiv\right]-1 / 2,1 / 2[\times[-10,10[$:
$\approx 1.7 \mathrm{~s}$ per C (onvective) T (ime) U (nit)s;
≈ 1000 CTU to reach (statistically) stationary state.
3-D Spatial Domain, $\left.\Omega_{f}^{*} \equiv\right]-1 / 2,1 / 2[\times]-10,10[\times]-10,10[$:
≈ 5000 s per CTU;
≈ 1000 CTU to reach (statistically) stationary state.

Parametric Manifold

Steady-State

Parametric Manifold

Steady-State

$\left[V^{*}, \Theta_{\mathrm{f}}\right]^{h} \in X^{h}$ high-dimensional $\subset X\left(\Omega_{\mathrm{f}}^{*}\right)$
$\left[V^{*}, \Theta_{\mathrm{f}}\right]^{h} \in \mathcal{M}^{h} \equiv\left\{\left[V^{*}, \Theta_{\mathrm{f}}\right]^{h}\left(\theta_{g}\right) \mid \theta_{g} \in \mathcal{P}_{\theta_{g}}\right\}$

Manifold Snapshots
 Steady-State

Snapshots: $\xi^{m} \equiv\left[V^{*}, \Theta_{f}\right]^{h}\left(\hat{\theta}_{g}^{m} \in \mathcal{P}_{\theta_{g}}\right), m=1, \ldots, M$.
$\operatorname{Ra}_{\ell}=10^{3}$: Nek5000, $t^{*} \rightarrow \infty$; stable steady states.

Bare Necessities

RB Spaces (hierarchical):

$$
X_{\mathrm{RB}}^{N} \subset \operatorname{span}\left\{\xi^{m}, m=1, \ldots, M\right\}, 1 \leq N \leq N_{\max } .
$$

Weak-Greedy [54] or Proper Orthogonal Decomposition (POD)
Galerkin Projection: $\theta_{g} \in \mathcal{P}_{\theta_{g}} \rightarrow\left[V^{*}, \Theta_{\mathrm{f}}\right]_{\mathrm{RB}}^{N}\left(\theta_{g}\right) \in X_{\mathrm{RB}}^{N}$.
A Posteriori Error Indicator: $[54,14]$

$$
\left\|\left[V^{*}, \Theta_{\mathrm{f}}\right]^{h}-\left[V^{*}, \Theta_{\mathrm{f}}\right]_{\mathrm{RB}}^{N}\right\|_{x} \lesssim \frac{1}{\beta_{\text {inf sup }}^{\text {hest }}} \| \text { residual }^{h} \|_{X_{h}^{\prime}} .
$$

Affine Expansion in Functions of Parameter:

$$
\mathcal{A}_{0}\left[V^{*}, \Theta_{\mathrm{f}}\right]+\cos \left(\theta_{\mathrm{g}}\right) \mathcal{A}_{1}\left[V^{*}, \Theta_{\mathrm{f}}\right]+\sin \left(\theta_{\mathrm{g}}\right) \mathcal{A}_{2}\left[V^{*}, \Theta_{\mathrm{f}}\right]=\mathcal{F} \in X^{\prime}
$$

Offline-Online Decomposition:
Online complexity independent of $\operatorname{dim}\left(X^{h}\right)$.

Bare Necessities

RB Spaces (hierarchical):

$$
X_{R B}^{N} \subset \operatorname{span}\left\{\xi^{m}, m=1, \ldots, M\right\}, 1 \leq N \leq N_{\max } .
$$

Weak-Greedy [54] or Proper Orthogonal Decomposition (POD)
Galerkin Projection: $\theta_{g} \in \mathcal{P}_{\theta_{g}} \rightarrow\left[V^{*}, \Theta_{\mathrm{f}}\right]_{\mathrm{RB}}^{N}\left(\theta_{g}\right) \in X_{\mathrm{RB}}^{N}$.
A Posteriori Error Indicator: $[54,14]$

$$
\left\|\left[V^{*}, \Theta_{\mathrm{f}}\right]^{h}-\left[V^{*}, \Theta_{\mathrm{f}}\right]_{\mathrm{RB}}^{N}\right\|_{x} \lesssim \frac{1}{\beta_{\text {inf sup }}^{\text {hest }}} \| \text { residual }^{h} \|_{X_{h}^{\prime}} .
$$

Affine Expansion in Functions of Parameter:

$$
\mathcal{A}_{0}\left[V^{*}, \Theta_{\mathrm{f}}\right]+\cos \left(\theta_{\mathrm{g}}\right) \mathcal{A}_{1}\left[V^{*}, \Theta_{\mathrm{f}}\right]+\sin \left(\theta_{\mathrm{g}}\right) \mathcal{A}_{2}\left[V^{*}, \Theta_{\mathrm{f}}\right]=\mathcal{F} \in X^{\prime}
$$

Offline-Online Decomposition: real-time, many-query contexts
Online complexity independent of $\operatorname{dim}\left(X^{h}\right)$.

Bare Necessities

RB Spaces (hierarchical):

$$
X_{R B}^{N} \subset \operatorname{span}\left\{\xi^{m}, m=1, \ldots, M\right\}, 1 \leq N \leq N_{\max } .
$$

Weak-Greedy [54] or Proper Orthogonal Decomposition (POD)
Galerkin Projection: $\theta_{g} \in \mathcal{P}_{\theta_{g}} \rightarrow\left[V^{*}, \Theta_{\mathrm{f}}\right]_{\mathrm{RB}}^{N}\left(\theta_{g}\right) \in X_{\mathrm{RB}}^{N}$.
A Posteriori Error Indicator: $[54,14]$

$$
\left\|\left[V^{*}, \Theta_{\mathrm{f}}\right]^{h}-\left[V^{*}, \Theta_{\mathrm{f}}\right]_{\mathrm{RB}}^{N}\right\|_{x} \lesssim \frac{1}{\beta_{\text {inf sup }}^{\text {hest }}} \| \text { residual }^{h} \|_{X_{h}^{\prime}} .
$$

Affine Expansion in Functions of Parameter:

$$
\mathcal{A}_{0}\left[V^{*}, \Theta_{\mathrm{f}}\right]+\cos \left(\theta_{\mathrm{g}}\right) \mathcal{A}_{1}\left[V^{*}, \Theta_{\mathrm{f}}\right]+\sin \left(\theta_{\mathrm{g}}\right) \mathcal{A}_{2}\left[V^{*}, \Theta_{\mathrm{f}}\right]=\mathcal{F} \in X^{\prime} .
$$

Offline-Online Decomposition: BE HTC c_{c} Functions
Online complexity independent of $\operatorname{dim}\left(X^{h}\right)$.

Accuracy: POD

Bifurcation [26]

RB: $N=14, N=16(\leftarrow$ POD spectrum); Newton continuation.

Accuracy: Weak Greedy

RB: Newton iteration; initialization $\Pi_{H^{1}(\Omega)}^{X_{N B}^{N}}$ of nearest- θ_{g} snapshot; wall-clock time 4.5 ms per θ_{g} value $\rightarrow \mathbb{S}_{\mathrm{HTC}}$.

$\mathrm{Ra}_{\ell}=10^{4}$: Statistically Stationary States $\quad[23,24][55,21]$

Parametrized Model Order Reduction:
Port-Reduced Reduced-Basis Component
Library Thermal Heatsink L Nguyen, Akselos SA

Parametrized Model Order Reduction: PR-RBC

Library Thermal Heatsink L Nguyen, Akselos SA

Acoustics Waveguide

Consider a waveguide $\mathcal{D}_{\perp} \times(0, \infty)$,

and find $p\left(x_{1}, x_{2}, x_{3}\right)$ such that

$$
-\nabla^{2} p-\kappa^{2} p=0 \text { in } \mathcal{D}_{\perp} \times(0, \infty)
$$

subject to boundary conditions

$$
\begin{aligned}
& p=q \text { on }\left(x_{1}, x_{2}\right) \in \mathcal{D}_{\perp}, x_{3}=0, \\
& \frac{\partial p}{\partial n}=0 \text { on }\left(x_{1}, x_{2}\right) \in \partial \mathcal{D}_{\perp} \times(0, \infty) \\
& p \text { (say) outgoing bounded wave as } x_{3} \rightarrow \infty .
\end{aligned}
$$

Separation of Variables

Restrict attention to the transverse domain \mathcal{D}_{\perp},

and find $\left(\Upsilon_{i}\left(x_{1}, x_{2}\right), \lambda_{i}\right)_{i=1, \ldots}$ solution of eigenproblem

$$
\begin{gathered}
-\nabla_{x_{1}, x_{2}}^{2} \Upsilon=\lambda \Upsilon \text { in } \mathcal{D}_{\perp}, \\
\frac{\partial \Upsilon}{\partial n}=0 \text { on } \partial \mathcal{D}_{\perp} ;
\end{gathered}
$$

order (real) eigenvalues $\lambda_{1}=0<\lambda_{2} \leq \lambda_{3} \leq \ldots$

Evanescence

Define n such that $\kappa \in\left[\sqrt{\lambda_{n}}, \sqrt{\lambda_{n+1}}[\right.$: then

$$
\begin{aligned}
p(x ; \kappa)=\sum_{j=1}^{n} \overbrace{c_{j} \Upsilon_{j}\left(x_{1}, x_{2}\right)}^{\text {propagating modes }} e^{-i \sqrt{\kappa^{2}-\lambda_{j}} x_{3}} \\
+\sum_{j=n+1}^{\infty} c_{j} \Upsilon_{j}\left(x_{1}, x_{2}\right) e^{-\sqrt{\lambda_{j}-k^{2}} x_{3}}
\end{aligned}
$$

for coefficients c_{j} chosen to realize $p\left(\cdot, \cdot, x_{3}=0\right)=q$.
Acoustics: $\kappa>0 \Rightarrow n \geq 1$; one or more propagating modes.
Heat Conduction: $\kappa=0 \Rightarrow n=1$; single "propagating" mode, $\Upsilon_{1} \equiv$ Constant .

Equilibrium Elasticity: $\kappa=0 \Rightarrow n=6$; rigid-body modes.

Thermal Heatsink: Thermal Fins in situ

Library of Parametrized Archetype Components

pPDE Model: System of Instantiated Components

Example 3
($\mathrm{H}=1$, eta ${ }_{i}=0.3, \mathrm{~L}_{\text {tot }}=3$)

Encapsulated pPDE Model Simple Heatsink:

$$
\mu_{\text {System }} \equiv\left(4 \mathrm{Bi}^{\mathrm{fin}}, H, L_{\mathrm{fin}}\right) \in \mathcal{P} \equiv[0.01,0.5] \times[1,2] \times[3, \infty[.
$$

pPDE Model: System of Instantiated Components

Example 1

$$
\left(H=2, \text { eta }_{1}=0.01, L_{\text {tot }}=7\right)
$$

Encapsulated pPDE Model Simple Heatsink:

Example 3

$\left(H=1\right.$, eta $\left.=0.3, L_{\text {tot }}=3\right)$

BE estimation

$$
\mu_{\text {System }} \equiv\left(4 \mathrm{Bi}^{\mathrm{fin}}, H, L_{\mathrm{fin}}\right) \in \mathcal{P} \equiv[0.01,0.5] \times[1,2] \times[3, \infty[.
$$

pPDE Model: System of Instantiated Components

Example 1

$$
\left(H=2, \text { eta }_{1}=0.01, L_{\text {tot }}=7\right)
$$

Encapsulated pPDE Model Simple Heatsink:

$$
\left(H=1.5, \text { eta }_{i}=0.1, L_{\text {tot }}=5\right)
$$

$$
\mu_{\text {System }} \equiv\left(4 \mathrm{Bi}^{\mathrm{fin}}, H, L_{\mathrm{fin}}\right) \in \mathcal{P} \equiv[0.01,0.5] \times[1,2] \times[3, \infty[.
$$

Offline Stage: Library

Port Reduction: Evanescence

Train over all port-compatible archetype component pairs: impose random Dirichlet conditions on unshared ports; consider random parameter values within each component; accumulate restriction of solution to shared port.

Perform POD on port restrictions for each port "color."
Bubble Reduction: Component Parametric Manifold
Train over all (single) archetype components: for each port mode-cum-Dirichlet data:
consider random parameter values within component; identify RB space for solution in interior of component.

Online Stage

Instantiation and Assembly: map $\mu_{\text {System }}$ to archetype component (local) parameters; connect (compatible) ports to form System.

Static Condensation: eliminate RB - not FE - bubble degrees of freedom within each instantiated component of System.

Direct Stiffness: construct Schur complement for System reduced port degrees of freedom - small and block-sparse.

Solution: apply sparse Gaussian elimination to Schur complement to obtain reduced port degrees of freedom.

Postprocessing: reconstruct RB bubble approximations in interiors of components from reduced port degrees of freedom.

Future Prospects: 2030

Headline:

Artificial Student Earns A+ in MIT Subject 2.51

 Implications: in engineering educationHow should we change what we teach, and how we teach?

How should we change our assessment of (human) students? and downstream, in professional engineering practice, How can we enhance prediction procedures?

General theme: integrated methodology for mathematical modeling and computation.

First (very brittle) steps: Artie [44].

Future Prospects: 2030

Headline:
and Accepts Employment as a ParaEngineer
Implications: in engineering education
How should we change what we teach, and how we teach?

How should we change our assessment of (human) students? and downstream, in professional engineering practice, How can we enhance prediction procedures?

General theme: integrated methodology for mathematical modeling and computation.

First (very brittle) steps: Artie [44].

References

[1] NH Afgan and M Da Graca Carvalho.
A confluence-based expert system for the detection of heat exchanger fouling.
Heat Transfer Engineering, 19(2):28-35, 1998.
[2] ASHRAE.
2017 ASHRAE Handbook - Fundamentals.
ASHRAE, Atlanta, GA, 2017.
[3] DG Bagby and RA Cormier.
A heat exchanger expert system.
AHSRAE Transactions, 95(2), 1989.
[4] J Ballani, P Huynh, D Knezevic, L Nguyen, and AT Patera.
PDE Apps for acoustic ducts: A parametrized component-to-system model-order-reduction approach.
In ENUMATH, Voss, Norway. Springer, 2018.
[5] J Ballani, P Huynh, D Knezevic, L Nguyen, and AT Patera.
PDE Apps for acoustic ducts: A parametrized component-to-system model-order-reduction approach.

In Proceedings ENUMATH 2017, Voss, Norway. Springer, 2018.
[6] P Binev, A Cohen, W Dahmen, G Petrova, and P Wojtaszczyk. Convergence rates for greedy algorithms in reduced basis methods. SIAM J Math Anal, 43(3):1457-1472, 2011.
[7] JP Birk.
The computer as student: an application of artifical intelligence.
J Chem Educ, 69(4):294-295, April 1992.
[8] DG Bobrow.
Natural language input for a computer problem solving system.
Technical Report Report MAC-TR-1, Project MAC, MIT, June 1964.
[9] D Braun, AH Mendez, F Matthes, and M Langen.
Evaluating natural language understanding services for conversational question answering systems.
In Proceedings of the SIGDIAL 2017 Conference, pages 174-185.
Association for Computational Linguistics, 2017.
[10] A Buhr and K Smetana.

Randomized local model order reduction.
Preprint arXiv:1706.09179, 2018.
[11] SB Clemes, KGT Hollands, and AP Brunger.
Natural convection heat transfer from long horizontal isothermal cylinders.

Transactions of the ASME, 116:96-104, February 1994.
[12] WJ Cochran, D Hainley, and L Khartabil.
Knowledge based system for the design of heat exchangers.
In SPIE Applications of Artificial Intelligence 1993: Knowledge-Based Systems in Aerospace and Industry, volume 1963, 1993.
[13] RJ Craig and M Bampton.
Coupling of substructures for dynami analyses.
AIAA Journal, 3(4):678-685, 1968.
[14] NC Cuong, K Veroy, and AT Patera.
Certified real-time solution of parametrized partial differential equations.
In S Yip, editor, Handbook of Materials Modeling, pages 1529-1564.
Springer, 2005.
[15] D Das, D Chen, AFT Martins, and NA Smith.
Frame-semantic parsing.
Computational Linguistics, 40(1), 2014.
[16] MO Deville, PF Fischer, and EM Mund.
High-Order Methods for Incompressible Fluid Flow.
Cambridge University Press, 2002.
[17] JL Eftan, AT Patera, and EM Ronquist.
An hp certified reduced basis method for parametrized elliptic partial differential equations.
SIAM J Sci Comput, 32:3170-3200, 2010.
[18] JL Eftang and AT Patera.
Port reduction in component-based static condensation for parametrized problems: Approximation and a posteriori error estimation.
IJNME, 96(5):269-302, 2013.
[19] W Elenbaas.
Heat dissipation of parallel plates by free convection.

Physica IX, 1:1-28, January 1942.
[20] HG Elrod.
Two simple theorems for establishing bounds on the total heat fow in steady-state heat-conduction problems with convective boundary conditions.

ASME J Heat Transfer, 96(1):65-70, 1974.
[21] L Fick, Y Maday, AT Patera, and T Taddei.
A stabilized POD model for turbulent flows over a range of Reynolds numbers: optimal parameter sampling and constrained projection.

J Computational Physics, 371:214-243, 2018.
[22] JR Finkel, T Grenager, and C Manning.
Incorporating non-local information into information extraction systems by Gibbs sampling.
In Proceedings of the 43nd Annual Meeting of the Association for Computational Linguistics (ACL 2005), pages 363-370, 2005.
[23] MA Grepl and AT Patera.

A posteriori error for reduced-basis approximations of parametrized parabolic partial differential equations.
M2AN, 39(1):157-181, 2005.
[24] B Haasdonk and M Ohlberger.
Reduced basis method for finite volume approximation of parametrized linear evolution equations.
M2AN, 42(2):277-302, 2008.
[25] AV Hassani and KGT Hollands.
On natural convection heat transfer from three-dimensional bodies of arbitrary shape.
ASME Journal of Heat Transfer, 111:363-371, 1989.
[26] M Hess, A Alla, A Quaini, G Rozza, and Max G.
A localized reduced-order modeling approach for PDEs with bifurcating solutions.

Preprint arXiv:1807.08851, July 2018.
[27] JS Hesthaven, G Rozza, and B Stamm.

Certified reduced basis methods for parameterized partial differential equations.

Springer, 2016.
[28] J Hokanson.
Software urlread2 for http requests and response processing in MATLAB, 2012.
[29] A Hormann.
Gaku: An artifical student.
Behavioral Science, 10:88-107, 1965.
[30] WC Hurty.
On the dynamics of structural systems using component modes.
AIAA Paper 64-487, 1964.
[31] DBP Huynh.
Software GNLRequest: Matlab client for Google Natural Language Processor, 2018.
[32] P Huynh, DJ Knezevic, and AT Patera.

A static condensation reduced basis element method: Approximation and a posteriori error estimation.
M2AN, 47(1):213-251, 2013.
[33] L lapichino, A Quarteroni, and G Rozza.
Reduced basis method and domain decomposition for elliptic problems in networks and complex parametrized geometries.
Comput Math Appl, 71(1):408-430, 2016.
[34] L lapichino, Q Quarteroni, and G Rozza.
A reduced basis nybrid method for the coupling of parametrized domains represented by fluidic networks.
CMAME, 221-222:63-82, 2012.
[35] JH Lienhard IV and JH Lienhard V.
A Heat Transfer Textbook.
Phlogiston Press, Fourth Edition, version 2.12 July 15, 2018, available at http://ahtt.mit.edu edition, 2018.
[36] N Kushman, Y Artzi, L Zettlemoyer, and R Barzilay.
Learning to automatically solve algebra word problems.

In Proceedings 52nd Annual Meeting of the Association for Computational Linguistics, 2014.
[37] HP Langtangen and A Logg.
Solving PDEs in Python - The FEniCS Tutorial Volume 1.
Springer, 2017.
[38] Google LLC.
Google Natural Language Processor.
https://cloud.google.com/natural-language/docs/, 2018.
[39] Y Maday and EM Ronquist.
The reduced basis element method: Application to a thermal fin problem.
SIAM Journal on Scientific Computing, 26(1):240-258, 2004.
[40] M Magen, BB Mikic, and AT Patera.
Bounds for conduction and forced convection heat transfer.
International Journal of Heat and Mass Transfer, 31(9):1747-1757, 1988.
[41] MathWorks.
MATLAB.

https://www.mathworks.com/.

[42] A Mukherjee and U Garain.
A review of methods for automatic understanding of natural language mathematical problems.
Artificial Intelligence Review, 29(2):93-122, 2008.
[43] Nek5000.
https://nek5000.mcs.anl.gov/.
[44] AT Patera.
Project Artie: An artificial student for disciplines informed by partial differential equations.
Technical report, arXiv (math), https://arxiv.org/abs/1809.06637, September 2018.
[45] P-O Persson.
Software DistMesh (MATLAB) for generation and manipulation of unstructured simplex meshes, 2004-2012.
[46] Q Qang, Z-H Wan, R Yan, and D-J Sun.

Multiple states and heat transfer in two-dimensional titled vonection with large aspect ratios.
Physical Review Fluids, 3(113503):1-28, 2018.
[47] A Quarteroni, A Manzoni, and F Negri.
Reduced basis methods for partial differential equations.
Springer, 2016.
[48] A Quarteroni and A Valli.
Numerical Approximation of Partial Differential Equations.
Springer, 2008.
[49] G Rozza and F Pichi.
Reduced basis methods for bifurcation analysis.
private communication.
[50] L Ridgway Scott.
Introduction to Automated Modeling with FEniCS.
Computational Modeling Initiative, 2018.
[51] F-Chart Software.

Engineering equation solver.
[52] Universal Technical Systems.
UTS Software, Heat Transfer 5.0, 2-18.
[53] B Szabó and I Babuška.
Introduction to Finite Element Analysis: Formulation, Verification and Validation.

Wiley, first edition, 2011.
[54] K Veroy and AT Patera.
Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations: rigorous reduced-basis a posteriori error bounds.
International Journal for Numerical Methods in Fluids, 47(8-9):773-788, 2005.
[55] I Wang, J Akhtar, J Borggaard, and T Iliescu.
Propert orthogonal decomposition closure models for turbulent flows; a numerical comparison.
[56] P Wang, R Kahawita, and DL Nguyen.
Transient laminar natural convection from horizontal cylinders.
International Journal of Heat and Mass Transfer, 34(6):1429-1442, 1991.
[57] EL Wilson.
The static condensation algorithm.
IJNME, 8(1):198-203, 1974.
[58] M Yano.
Software fem2d (MATLAB) for finite element solution of PDEs in two space dimensions, 2018.
[59] Masayuki Yano.
A space-time Petrov-Galerkin certified reduced basis method: Application to the Boussinesq equations.
SIAM Journal on Scientific Computing, 36(1):A232-A266, 2014.
[60] MM Yovanovich and P Teertstra.
Natural convection from horizontal finite length isothermal circular cylinders.

33rd Thermophysics Conference, AIAA Paper 99-3623, 1999.

